Affiliation:
1. Saratov State University
Abstract
In this article, we find an analytical characteristic of the type of a line and derive the formulae for calculating the coordinates of the midpoints and quasi-midpoints of elliptic, hyperbolic, and parabolic segments in an extended hyperbolic space $H^3$ in the frame of the first type. The space $H^3$ we consider in the Cayley\,--\,Klein projective model as a projective three-dimensional space with an oval quadric $\gamma$ fixed in it.
Publisher
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Subject
Applied Mathematics,Geometry and Topology,Mathematical Physics
Reference15 articles.
1. Busemann, H., Kelly P.: Projective Geometry and Projective Metrics. Academic Press Inc. New York (1953).
2. Efimov, N.: Higher Geometry. MAIK. Nauka/Interperiodika. FIZMATLIT (2004).
3. Glaeser G., Stachel H., Odehnal B.: The Universe of quadrics, Springer Berlin, Heidelberg (2020). https://doi.org/10.1007/978-3-662-61053-4
4. Hodge, W., Pedoe, D.: Methods of Algebraic Geometry. Vol. I (Book II). Cambridge University Press (1994) [1947]. https://doi.org/10.1017/CBO9780511623875
5. Romakina, L.: Coordinates of the midpoints of non-parabolic segments of the hyperbolic plane of positive curvature in the canonical frame of the first type. Mathematics. Mechanics, \textbf{20}, 70-72 (2018).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献