1. Reference1 S.I. Amari, H. Nagaoka, \textit{Method of Information Geometry}, AMS translation of Math., Monograph., Oxford Univ. Press, (2000).
Reference2 I. Buc\u{a}taru, \textit{Nonholonomic frames for Finsler spaces with $(\alpha,\beta)$-metrics}, Proceedings of the conference on Finsler and Lagrange geometries, Ia\c{s}i, Kluwer Acad. Publ. August 2001, pp.69-78, (2003).
2. Reference3 X. Cheng, Z. Shen, Y. Zhou, \textit{On a class of locally dually flat Finsler metrics}, Internationa J. Math., Vol. 21(11), pp. 1-13, (2010).
3. Reference4 X. Cheng, Y. Tian, \textit{Locally dually flat Finsler metrics with special curvature properties,} Differ. Geom. Appl. Vol. 29(1), pp. 98-106, (2011).
4. Reference5 X. Cheng and Z. Shen \textit{A class of Finsler metrics with isotropic S-curvature}. Isr. J. Math. Vol. 169(1), pp. 317-340, (2009).
5. Reference6 M. Crasmareanu, \textit{Lagrange spaces with indicatrices as constant mean curvature surfaces or minimal surfaces}, An. \c{S}t. Univ. Ovidius Constan\c{t}a Vol. 10(1), pp. 63-72, (2002).