On Thurston's Geometrical Space Form Problem: On Quasi Space Forms

Author:

Haesen Stefan,Petrović-torgašev Miroslava,Verstraelen Leopold

Abstract

A proposal is made for what may well be the most elementary Riemannian spaces which are homogeneous but not isotropic. In other words: a proposal is made for what may well be the nicest symmetric spaces beyond the real space forms, that is, beyond the Riemannian spaces which are homogeneous and isotropic. The above qualification of ‘’nicest symmetric spaces” finds a justification in that, together with the real space forms, these spaces are most natural with respect to the importance in human vision of our ability to readily recognise conformal things and in that these spaces are most natural with respect to what inWeyl’s view is symmetry in Riemannian geometry. Following his suggestion to remove the real space forms’ isotropy condition, the quasi space forms thus introduced do offer a metrical, local geometrical solution to the geometrical space form problem as posed by Thurston in his 1979 Princeton Lecture Notes on ‘’The Geometry and Topology of 3- manifolds”. Roughly speaking, quasi space forms are the Riemannian manifolds of dimension greater than or equal to 3, which are not real space forms but which admit two orthogonally complementary distributions such that at all points all the 2-planes that in the tangent spaces there are situated in a same position relative to these distributions do have the same sectional curvatures.

Publisher

International Electronic Journal of Geometry, Person (Kazim ILARSLAN)

Reference54 articles.

1. [1] Albujer, A. and Haesen, S.: A geometrical interpretation of the null sectional curvature. J. Geom. Phys. 60, 471-476(2010).

2. [2] Belkhelfa, M., Deszcz, R. and Verstraelen, L.: Symmetry properties of 3-dimensional d’Atri spaces. Kyungpook Math. J. 46, 367-376 (2006).

3. [3] Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003).

4. [4] Berger, M.: La géométrie métrique de variétés riemanniennes (...), in “Élie Cartan et les mathématiques d’ aujourd’hui”, Astérisque, Paris, 9- 66(1985).

5. [5] Boeckx, E., Kowalski, O. and Vanhecke, L.: Riemannian manifolds of conullity two. World Scientific, Singapore (1996).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3