Affiliation:
1. Transilvania University of Brasov
2. University of Bucharest
Abstract
In this note we propose a new sectional curvature on a Riemannian manifold endowed with a semi-symmetric non-metric connection. A Chen-Ricci inequality is proven. Some possible applications in other fields are mentioned.
Funder
Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI
Publisher
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Reference13 articles.
1. [1] Agashe, N.S.: A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 23, 399–409 (1992).
2. [2] Agashe, N.S.; Chafle, M.R.: On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. Tensor 55, 120–130 (1994).
3. [3] Chen, B.-Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimentions. Glasgow Math. J. 41, 33–41 (1999).
4. [4] Cimpoesu, F.; Mihai, A.: Characterizing the E ⊗ e Jahn-Teller potential energy surfaces by differential geometry tools, Symmetry 14(3), art 436
(2022).
5. [5] Friedmann, A.; Schouten, J.A.: Über die Geometrie der halbsymmetrischen Übertragungen. Math. Z. 21, 211–223 (1924).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献