Affiliation:
1. State University of Novi Pazar, Department of Natural and Mathematical Sciences
2. Wrocław University of Environmental and Life Sciences
3. Université Polytechnique Hauts-de-France
Abstract
Let M be a Wintgen ideal submanifold of dimension n in a real space form Rn+m(k) of dimension (n + m) and of constant curvaturek, n ≥ 4, m ≥ 1. Let g, R, Ricc, g ∧ Ricc and C be the metric tensor, the Riemann-Christoffel curvature tensor, the Ricci tensor, the Kulkarni-Nomizu product of g and Ricc, and the Weyl conformal curvature tensor of M, respectively. In this paper we study Wintgen ideal submanifolds M in real space forms Rn+m(k), n ≥ 4, m ≥ 1, satisfying the following pseudo-symmetry type curvature conditions:
(i) the tensors R · C and Q(g, R) (resp., Q(g, C), Q(g, g ∧ Ricc), Q(Ricc, R) or Q(Ricc, g ∧ Ricc)) are linearly dependent;
(ii) the tensors C · R and Q(g, R) (resp., Q(g, C), Q(g, g ∧ Ricc), Q(Ricc, R) or Q(Ricc, g ∧ Ricc)) are linearly dependent;
(iii) the tensors R·C -C ·R and Q(g, R) (resp., Q(g, C), Q(g, g∧Ricc), Q(Ricc, R) or Q(Ricc, g∧Ricc)) are linearly dependent.
Publisher
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Reference56 articles.
1. [1] Cartan, E.: Leçons sur la géométrie des espaces de Riemann. 2nd ed., Paris: Gauthier-Villars (1946).
2. [2] Chen, B.-Y.: Some pinching and classification theorems for minimal submanifolds. Arch. Math. (Basel). 60 (6), 568-578 (1993).
https://doi.org/10.1007/BF01236084
3. [3] Chen, B.-Y.: Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tôhoku Math. J. 49 (2), 277-297 (1997). DOI:
10.2748/tmj/1178225151
4. [4] Chen, B.-Y.: δ-invariants, inequalities of submanifolds and their applications. Topics in Differential Geometry, Ch. 2, Editors A. Mihai, I. Mihai
and R. Miron. Editura Academiei Romane (2008).
5. [5] Chen, B.-Y.: Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures. Ann. Glob Anal. Geom. 38 (2),
145-160 (2010). https://doi.org/10.1007/s10455-010-9205-5