Affiliation:
1. National University of Uzbekistan
2. KARADENİZ TEKNİK ÜNİVERSİTESİ
Abstract
Let E_{3} be the 3-dimensional Euclidean space and S be a set such that it has at least two elements. A definition of an S-parametric figure in E_{3} and a definition of a motion of an S-parametric figure in E_{3} are given. Complete systems of G-invariants of a parametric figure in E_{3} for fundamental groups of transformations of E_{3} have obtained. A complete system of G-invariants of a motion of a parametric figure in E_{3} for the Galileo groups Gal_{1}(3,R), Gal^{+}_{1}(3,R) of transformations of E_{3} have obtained.
Publisher
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Subject
Applied Mathematics,Geometry and Topology,Mathematical Physics
Reference16 articles.
1. [1] Aripov R. and Khadjiev D.:The complete system of global differential and integral invariants of a curve in Euclidean geometry, Izvestiya Vuzov, Ser. Mathematics, 542, 1-14 (2007).(Russian). (English translation) Aripov R. and Khadzhiev D., Russian Mathematics (Iz VUZ), 2007, Vol. 51, No. 7, pp.1-14.
2. [2] BergerM.:Geometry I, Springer-Verlag,Berlin,Heidelberg,1987.
3. [3] ElleryB.G.:Foundations of Euclidean and Non-Euclidean Geometry,HoltRinehartand WinstonINC,NewYork,1968.
4. [4] Marvin,Y.G.:EuclideanandNon-EuclideanGeometries,W.H.FreemanandCompany,NewYork,1993.
5. [5] Ho ̋ferR.:m-pointinvariantsofrealgeometries,BeitrageAlgebraGeom,40,261-266(1999).