Abstract
In this work, we handle timelike Aminov surfaces in E_1^4 with respect to having pointwise one type Gauss map. Firstly, we get the laplace of Gauss map of this type of surface. Then, we obtain that there is no timelike Aminov surface having harmonic Gauss map and also pointwise one type Gauss map of first kind in Minkowski 4-space. Further, we yield the conditions of having pointwise one type Gauss map of second kind.
Publisher
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Subject
Applied Mathematics,Geometry and Topology,Mathematical Physics
Reference13 articles.
1. [1] Aksoyak, F.K., Yaylı, Y.: Rotational Surfaces with pointwise 1-Type Gauss map in Pseudo-Euclidean Space $E2-4$. Proceedings Book of
International Workshop on Theory of Submanifolds, June 2-4/2016, Istanbul. 1, (2016).
2. [2] Aminov, Y.A.: Surfaces in E4 with a Gaussian curvature coinciding with Gaussian torsion up to sign. Mathematical Notes. 56 (6), 1211-1215
(1994).
3. [3] Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.H., Murathan, C., Öztürk, G.: Vranceanu Surfaces in E4 with Pointwise 1-Type Gauss map. Indian
J. Pure Appl. Math.. 42, 41-51 (2011).
4. [4] Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.H., Murathan, C., Öztürk, G.: Tensor Product Surfaces with Pointwise 1-Type Gauss map. Bull.
Korean Math. Soc. 48 (3), 601-609 (2011).
5. [5] Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.H., Murathan, C., Öztürk, G.: Rotational embeddings in E4 with pointwise 1-Type gauss map. Turkish
Journal of Mathematics. 35 (3), 493-499 (2011).