Abstract
Let $(M,g)$ be a Riemannian manifold and $(TM,\tilde{g})$ be its tangent bundle with the $g-$natural metric. In this paper, a family of metallic Riemannian structures $J$ is constructed on $TM,$ found conditions under which these structures are integrable. It is proved that $(TM,\tilde{g},J)$ is decomposable if and only if $(M,g)$ is flat.
Publisher
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Subject
Applied Mathematics,Geometry and Topology,Mathematical Physics
Reference22 articles.
1. [1] Abbassi, M.T.K.: Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold. Comm. Math. Uni.
Carolinae. 45 (4), 591-596 (2004).
2. [2] Abbassi, M.T.K.: g-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note di Matematica. 28 (1), 6-35
(2008).
3. [3] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. The Quarterly
Journal of Mathematics. 62 (2), 259-288 (2011).
4. [4] Abbassi, M.T.K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno). 41, 71-92 (2005).
5. [5] Akpınar, R. Ç.: On bronze Riemannian structures. Tbilisi Math. Journal. 13 (3), 161169 (2020).