Evaluating Pavement Condition Index and Maintenance Management using Artificial Neural Networks

Author:

Abbas SaifalORCID,Khalil Ar. AhsanORCID,Ali Md SobujORCID,Sultana SaidaORCID,Shah Syed Haseeb HaiderORCID

Abstract

The pavement condition index (PCI) calculates pavement conditions based on current distresses. In traditional PCI calculation, a visual inspection method collects field data such distresses and stiffness. Data helps anticipate PCI values, a lengthy and difficult process. This research aims to create a simple, adaptable model that shows how PCIs, torments, and stiffness relate. Artificial neural networks (ANN) forecast PCI values for various parts, eliminating manual labour and specialized procedures. Based on distresses, the PCI estimates pavement conditions. For typical PCI intentions, a visual inspection device collects field data such distresses and stiffness. The data allows time-consuming and complicated PCI estimation. This study seeks to construct a simple, extensible model that links PCIs, torments, and rigidity. ANN prediction part PCI values, eliminating the need for manual labour and specialized technologies.

Publisher

AMO Publisher

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3