Dissipative Non-Slip MHD Nanofluid Flow with Variable Viscousity and Thermal Conductivity in the Presence of Arrhenius Chemical Reaction

Author:

Ogboru Kelvin O.,Lawal Muhammad M.,Okedoye Akindele M.ORCID

Abstract

This research investigates the intricate dynamics of dissipative non-slip magnetohydrodynamic (MHD) nanofluid flow, characterized by variable viscosity and thermal conductivity, under the influence of an Arrhenius chemical reaction. The inclusion of the Arrhenius chemical reaction adds complexity through heat generation or absorption, impacting temperature and concentration gradients. The study is motivated by the extensive applications of nanofluids in engineering and industrial processes, where precise control of heat and mass transfer is critical. We develop a comprehensive mathematical model that incorporates the variable properties of the nanofluid, the effects of the Lorentz force due to the applied magnetic field, and the temperature-dependent reaction rates dictated by the Arrhenius equation. The formulated governing equations were non-dimensionalised to identify the flow governing parameters. Finite Element Method (FEM), grid generation, solution algorithms, and post-processing to analyse velocity, temperature, and concentration distributions were used to obtain the numerical methods to solve fluid flow problems based on the Navier-Stokes equations, involving concepts of discretization. pdsolve subpackage in Maple 2023 was used to numerically solve PDEs with specific initial and boundary conditions, incorporating the plot and display commands for graphical analysis, and the results are presented and discussed. The findings reveal that the interplay between parameters like Hartmann number, Darcy parameter, and heat generation or absorption profoundly influences flow behaviour and thermal characteristics. The reactivity parameter is crucial, dictating the rate of chemical reactions and affecting system dynamics. This research enhances understanding of the interdependencies among fluid properties, chemical reactions, and external parameters in nanofluid flows. 

Publisher

AMO Publisher

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3