Maximal Efficiencies in New Single GaAs(1−x) P(x) - Alloy Junction Solar Cells at 300 K

Author:

Van-Cong Huynh

Abstract

In single n+(p+) − p(nn) [X(x) ≡ GA1−xPx]-alloy junction solar cells at 300 K, 0 ≤ xx ≤ 1, by basing on the same physical model and the same treatment method, as those used in our recent works (Van Cong, 2024), we will also investigate the highest (or maximal) efficiencies, ηImax .(IImax.) at the open circuit voltageVos(= Vos1 (os2 ),according to highest hot reservoir temperatures TH(K), obtained from the Carnot efficiency theorem, which was demonstrated by the use of the entropy law. Here, some concluding remarks are given in the following. (i)-First, with increasing x=(0, 0.5, 1), from Table 3, obtained for the single n+ − p X(x)-alloy junction solar cells, and for given rSn(Cd)-radius, for example, one obtains: ηImax (↗)= 31.18%, 33.495%, 35.99%, according to TH(K) = 435.9, 451.1, 468.7, at Vos (V) = 1.07, 1.06, 1.05, respectively. (ii)- Secondly, with increasing x=(0, 0.5, 1), from Table 5, obtained for the single p+ − n X(x)-alloy junction solar cells, and for given rCd(Sn)-radius, for example, one gets: ηηIImax (↘)= 33.05%, 31.95%, 31.37%, according to TH(K) = 448.0, 440.9, 437.1, at Vos (V)[>Vos(V)] = 1.20, 1.15, 1.12, respectively, suggesting that such ηImax .(IImax .)-and-TH variations dependon Vos(V)[> Vos (V)] − values. Then, in particular, as given in Table 3, for x = 0 and (rda ) =(pt), one gets: ηI =23.48 % and 29.76 % at Vos= 0.98 V and 1.1272 V, respectively, which can be compared with the corresponding results obtained by Moon et al. (2016) and Green et al. (2022) for the single-junction GaAs thin-film solar cell, 22.08 % and 29.71 %, with relative deviations in absolute values, 6.34 % and 0.17 %. Finally, one notes that, in order to obtain the highest efficiencies, the single GaAs1−x Px-alloy junction solar cells could be chosen rather than the single crystalline GaAs-junction solar cell.

Publisher

AMO Publisher

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3