Deep Learning Models for Classification of Lung Diseases

Author:

Javid MazharORCID,Xie Hongwei

Abstract

This thesis focuses on the importance of early detection in lung cancer through the use of medical imaging techniques and deep learning models. The current practice of examining nodules larger than 7 mm can delay detection and allow cancerous nodules to grow undetected. The project aims to detect nodules as small as 3 mm to improve the chances of early cancer identification. The use of constrained volume datasets and transfer learning techniques addresses the scarcity of medical data, and deep neural networks are employed for classification and segmentation tasks. Despite the limited dataset, the results demonstrate the effectiveness of the proposed models. Class activation maps and segmentation techniques enhance accuracy and provide insights into the most critical areas for diagnosis. This research contributes to the understanding of lung disease diagnosis and highlights the potential of deep learning in medical imaging. 

Publisher

AMO Publisher

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3