A systematic review of the machine learning algorithms for the computational analysis in different domains

Author:

Chahar Ravita,Kaur Deepinder

Abstract

In this paper machine learning algorithms have been discussed and analyzed. It has been discussed considering computational aspects in different domains. These algorithms have the capability of building mathematical and analytical model. These models may be helpful in the decision-making process. This paper elaborates the computational analysis in three different ways. The background and analytical aspect have been presented with the learning application in the first phase. In the second phase detail literature has been explored along with the pros and cons of the applied techniques in different domains. Based on the literatures, gap identification and the limitations have been discussed and highlighted in the third phase. Finally, computational analysis has been presented along with the machine learning results in terms of accuracy. The results mainly focus on the exploratory data analysis, domain applicability and the predictive problems. Our systematic analysis shows that the applicability of machine learning is wide and the results may be improved based on these algorithms. It is also inferred from the literature analysis that at the applicability of machine learning algorithm has the capability in the performance improvement. The main methods discussed here are classification and regression trees (CART), logistic regression, naïve Bayes (NB), k-nearest neighbors (KNN), support vector machine (SVM) and decision tree (DT). The domain covered mainly are disease detection, business intelligence, industry automation and sentiment analysis.

Publisher

Association of Computer, Communication and Education for National Triumph Social and Welfare Society (ACCENTS)

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Mechanical Engineering,Civil and Structural Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of concept drift and data leakage on log level prediction models;Empirical Software Engineering;2024-07-25

2. Predicting shock-induced cavitation using machine learning: implications for blast-injury models;Frontiers in Bioengineering and Biotechnology;2024-02-05

3. Improving Brain Stroke Diagnosis by Using Machine Learning Algorithms;Lecture Notes in Networks and Systems;2024

4. Stress Detection using Machine Learning Techniques: A review;2023 5th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2023-12-15

5. Enhancing Credit Card Fraud Detection: Analyzing Time and Amount Distributions with Computational Intelligence Algorithms;2023 Third International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS);2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3