The Effect of Word Representation Methods on Aspect-Based Sentiment Analysis

Author:

POLATGİL Mesut1,TUNA Murat Fatih2,KAYNAR Oğuz2

Affiliation:

1. CUMHURİYET ÜNİVERSİTESİ, ŞARKIŞLA UYGULAMALI BİLİMLER YÜKSEKOKULU

2. SİVAS CUMHURİYET ÜNİVERSİTESİ, İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ, YÖNETİM BİLİŞİM SİSTEMLERİ BÖLÜMÜ

Abstract

Klasik duygu analizi yöntemlerinden farklı olarak hedef tabanlı duygu analizi (HTDA), birden fazla kategorinin olduğu karmaşık yapıdaki çevrimiçi tüketici geribildirimlerini değerlendirmede daha başarılı bir performans ortaya koyabilmektedir. Nitekim bir platformda yer alan tüketici geri bildirimleri bir ürüne ilişkin birden farklı hedefe atfedilebilmektedir ve standart duygu analizleri bu geribildirimleri analiz etmede yetersiz kalmaktadır. Literatürdeki gelişmeler gözden geçirildiğinde, HDTA çalışmalarının, duygu analizine odaklanan diğer çalışmalar içinde oldukça popüler olduğu anlaşılmaktadır. SemEval ABSA-2016 yarışmasında, HTDA için 8 farklı dilde veri setleri yayınlanmış ve ekipler duygu analizi için yarışmışlardır. Yarışmada hedef terim, kategori ve duygu sınıfı tespit etmek gibi farklı alt görevler bulunmaktadır. Bu alt görevlerin içindekilerden biri, hedef terimin tespit edilmesidir. Türkçe dili için HTDA çalışmaları oldukça sınırlıdır. Farklı diller ve farklı kelime temsil yöntemleri kullanan çalışmalar vardır. SemEval Absa 2016 yarışması Türkçe veri seti için kelime temsil yöntemlerinin etkisini inceleyen çalışma bulunmamaktadır. Bu çalışma, müşteri yorumlarındaki hedef terimlerin tespitinde farklı kelime temsil yöntemlerinin başarısının incelenmesi amacıyla gerçekleştirilmiştir. Word2Vec, Glove ve Fasttext kelime temsil yöntemleri analiz kapsamında incelenmiş ve hedef terimi en başarılı tespit edebilen yöntemin Fasttext kelime temsil yöntemi olduğu görülmüştür. Çalışmada ayrıca F-1 sınıflandırma ölçütü açısından %77 başarı oranı ile Türkçe veri seti için literatürdeki en yüksek sınıflandırma başarısı elde edilmiştir.

Publisher

International Journal of Informatics Technologies

Subject

General Medicine

Reference40 articles.

1. F. S. Çeti̇n, G. Eryi̇ği̇t, “Türkçe Hedef Tabanlı Duygu Analizi İçin Alt Görevlerin İncelenmesi – Hedef Terim, Hedef Kategori ve Duygu Sınıfı Belirleme”, Bilişim Teknolojileri Dergisi, 11(1), 43–56, 2018.

2. O. Kaynar, Y. Görmez, M. Yıldız, A. Albayrak, “Makine öğrenmesi yöntemleri ile Duygu Analizi”, International Artificial Intelligence and Data Processing Symposium (IDAP’16), Malatya, 234–241, September 17-18, 2016.

3. Z. Khan, T. Vorley, “Big data Text Analytics: An Enabler of Knowledge Management”, Journal of Knowledge Management, 21(1), 18–34, 2017.

4. G. Zaltman, L. H. Zaltman, Marketing Metaphoria: What Deep Metaphors Reveal About the Minds of Consumers (1st edition), Harvard Business Review Press, Boston, 2008.

5. D. Westerman, P. R. Spence, B. Van Der Heide, “Social Media as Information Source: Recency of Updates and Credibility of Information”, Journal of Computer-Mediated Communication, 19(2), 171–183, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3