Yapay Zekâya Dayalı Robot Kol ile Hareket ve Farklı Nesnelerin Sertlik Kontrolü

Author:

AKSOY Bekir1,ÖZSOY Koray2,YÜCEL Mehmet2,EKREM Özge2,SALMAN Osamah Khaled Musleh3

Affiliation:

1. ISPARTA UYGULAMALI BİLİMLER ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ, MEKATRONİK MÜHENDİSLİĞİ ANABİLİM DALI

2. ISPARTA UYGULAMALI BİLİMLER ÜNİVERSİTESİ

3. YILDIZ TEKNİK ÜNİVERSİTESİ

Abstract

Çalışmada 3D baskı teknolojilerinden Fused Deposition Modeling (FDM) yazıcı kullanılarak robotik kol üretilmiştir. Üretilen robot kolun görüntü işleme teknikleri ve makine öğrenme algoritmaları kullanarak dokunsal algılama ve hareket planlaması araştırılmıştır. Bu çalışmanın amacı, robotik kolun kontrolsüz kuvvet uygulamasını engellemek ve dokunsal kavrama sorunlarını çözmek için görüntü işleme teknikleri ve derin öğrenme algoritmaları kullanılarak yenilikçi yaklaşımların araştırılması ve uygulanmasıdır. Bu çalışmada, CAD programı ile tasarımı gerçekleştirilmiş parçaların FDM tipi üç boyutlu yazıcı kullanılarak katı modelleri alınmış ve montaj için uygun hale getirilmiştir. Montajı tamamlanan robotik elin kontrol sistemi ise temel olarak Raspberry Pi kontrol kartı, servo motorlar, basınç sesörleri ve kameradan oluşmaktadır. Robotik kola ait her parmak ucuna yerleştirilen basınç sensörleri ile ürünün sertliği ölçülerek dokunsal algılama işlemi gerçekleştirilmiştir. Raspberrry pi kontrol kartı kullanılarak sensörlerden alınan veriler işlenmekte ve servo motorlara uygun hareket ve kavrama basınç bilgisi gönderilmektedir. Kamera kullanılarak elde edilen insan elinin olası hareketleri ile robotik kol için referans bir veri seti hazırlanmıştır. Veri setine ait görüntüler üzerinde Gaussian filtreleme yöntemi kullanılarak görüntü işleme sağlanmıştır. Bununla birlikte veri seti üzerinde makine öğrenme algoritmaları kullanarak robotik kolun hareket açısal konumu optimize edilmiş ve HitNet, CNN, Kapsül Ağları ve Naive Bayes derin öğrenme modelleri kullanılarak robot kolun hareket planlanması %90 doğruluk oranı ile sınıflandırılmıştır. Performans değerlendirme kriterlerine göre başarıları kıyaslanan derin öğrenme modelleri arasında, robotik kolun hareket planlaması için; HitNET algoritması ile 97.23%, CNN ile 97.48%, Capsnet algoritması ile %98,58 ve Naive Bayes modeli ile %98.61 doğruluk oranı elde edilmiştir. Performans değerlendirme kriterleri sonucunda; Naive Bayes modelinin %98.61 doğruluk, %98.63 özgüllük, %98.65 duyarlılık, 1.39 hata oranı ve %68.64 F-ölçüsü değeri ile diğer modellere göre daha başarılı sonuç verdiği gözlemlenmiştir.

Publisher

International Journal of Informatics Technologies

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Design of Robotic Arm Based on ROS;2023 3rd International Conference on Computer, Control and Robotics (ICCCR);2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3