Specifity of Including of Structural Nonlinearity in Model of Dynamics of Cable-Driven Robot

Author:

Kalinin Ya. V.1,Marchuk E. A.2

Affiliation:

1. Innopolis University

2. Volgograd State Technical University

Abstract

The paper deals with a problem of modeling of the dynamics of a parallel cable-driven robot with the inclusion of structural nonlinearity of cables in a mathematical model. Mathematical model is implemented in a computer model with the possibility of using of symbolic calculations. Parallel cable robots as a type of robotics have been developing in the last two or three decades. The research in the theoretical field was being carried out and the mathematical model of the cable system was being refined with the spread of the practical use of cable robots. This is a non-trivial task to draw up a dynamic model of a cable-driven robot. Cable-driven robots are highly nonlinear systems, because of the main reason for the nonlinearity is the properties of the cable system. As an element of a mechanical system, the cable or the wire rope is a unilateral constraint, since the cable works only for stretching, but not for compression. Thus, the cables are structurally nonlinear elements of the system. On the other hand, cables have the property of sagging under their own weight. Thus, the cables are geometrically nonlinear elements of the system. Under the condition of a payload mass that is utterly greater than the mass of each cable, the cables can be considered strained without sagging and geometric nonlinearity can be neglected. Since symbolic computations can be used in a computer model which implements a mathematical model of the dynamics of a robot, in such a way it must provide the possibility of symbolic computations with the condition of structural nonlinearity. The main aim of this work is to develop a method that ensures the inclusion of the structural nonlinearity of the cable system in the mathematical model. It is supposed to consider the possibility of implementation of the computer model with symbolic computations. The problem of including a mathematical model of cables as unilateral constraints in the model of highly loaded cable robots is considered. The justification for including the activation functions in a system of differential equations of dynamics of cable-driven robot is formulated. A model of wire ropes as unilateral constraints is represented via including the activation functions in a system of differential equations. With using of the proposed method, numerical solution of a problem of forward dynamics has been obtained for high-loaded parallel cable-driven robot.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3