Planning Purposeful Activities Autonomous Intelligent Robot with Knowledge Update in Short-Term Memory

Author:

Melekhin V. B.1,Khachumov M. V.2

Affiliation:

1. Dagestan State Technical University

2. Federal Research Center "Computer Science and Control"; Program Systems Institute of the Russian Academy Sciences

Abstract

The main problems associated with the creation of autonomous intelligent robots capable of performing various complex tasks in a priori undescribed unstable problematic environments, based on the processing of knowledge presented in an abstract way, are outlined. To store typical elements of an abstract knowledge representation model, the article recommends using long-term and short-term memory. Long-term memory with associative search and data retrieval is designed to permanently store information necessary for planning a variety of purposeful activities that provide the robot with the ability to solve various complex behavioral tasks. In short-term memory, submodels of knowledge representation are entered from long-term memory, which are necessary for solving the current task of a certain type in the short term, related to the fulfillment of the task formulated for the autonomous intelligent robot. At the same time, with each change in the type of the current task of behavior being solved by an autonomous intelligent robot, a corresponding update of knowledge stored in short-term memory is simultaneously carried out. Original constructions of typical elements of the model for representing abstract knowledge in the form of various behavioral skills, set regardless of a particular subject area, have been developed. This approach to building a knowledge representation model allows autonomous intelligent robots to adapt to the current operating conditions and, on this basis, organize purposeful activities in complex unstable problematic environments. Various tools and rules for processing abstract knowledge are proposed, which endow autonomous intelligent robots with the ability to eliminate the differences between the current and target situation of the problem environment both in terms of the values of structurally equivalent relations of the same name in them, and in the current states of objects in the environment. This, in turn, makes it possible to create intelligent problem solvers for autonomous intelligent robots for various purposes, capable of performing complex tasks in unstable a priori uncertain conditions of a problematic environment.

Publisher

New Technologies Publishing House

Reference24 articles.

1. Kurpatov A. V. Thinking. Systems research. Moscow, Kapital, 2022, 672 p. (in Russian).

2. Potapov A. S. Artificial intelligence and universal thinking. Saint Petersburg, Politekhnika, 2012, 711 p. (in Russian).

3. Demkin V. I., Lukov D. A. Artificial intelligence in robotics, Vestnik sovremennyh issledovanij, 2018, no. 6.3 (21), pp. 456—458 (in Russian).

4. Ivan’ko A. F., Ivan’ko M. A., Ibragimov A. A. Intelligent mobile robots and analysis of their application, Nauchnoe obozrenie. Tekhnicheskie nauki, 2020, no. 1, pp. 32—38 (in Russian).

5. Russell S., Norvig P. Artificial Intelligence: A Modern Approach, Pearson, 2020, 1216 p.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3