Algorithms for Direct and Inverse Parametric Fast Fourier Transform

Author:

Ponomareva O. V., ,Ponomarev A. V.,Smirnova N. V., ,

Abstract

Русский Main page New issue Archive of articles Editorial board For the authors Publishing house ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES". No. 1. Vol. 28. 2022 DOI: 10.17587/it.28.9-19 O. V. Ponomareva, Dr. Sc., Tech., Professor, A. V. Ponomarev, PhD, Econ., Associate Professor, Kalashnikov Izhevsk State Technical University, Izhevsk, 426069, Russian Federation, N. V. Smirnova, PhD, Tech., Associate Professor, Sevastopol State University, Sevastopol, 299053, Russian Federation Algorithms for Direct and Inverse Parametric Fast Fourier Transform Classical Fourier processing of finite information discrete signals (FID signals) is the most important method of digital analysis, modeling, optimization, improvement of control and decision making. The theoretical basis of classical Fourier processing of FID signals is the discrete Fourier transform (DFT). The practical basis of classical Fourier processing of FID signals is the Fast Fourier Transform (FFT). The practice of using classical Fourier processing of FID signals, having confirmed its effectiveness, revealed a number of negative effects inherent in this type of digital signal processing (DSP). The aliasing effect, scalloping effect, picket fence effect, significantly affect the effectiveness of analysis, modeling, optimization, improvement of management and decision making. To increase the efficiency of Fourier processing of FID signals, the authors of the paper have developed a generalization of DFT in the form of a parametric DFT (DFT-P). Since the direct application of parametric Fourier processing of FID signals (as well as the use of classical Fourier processing of FID signals) requires complex multiplications, fast procedures are required for the practical implementation of this type of FID signals. Purpose of the research is to develop algorithms for the fast parametric discrete Fourier transform (FFT-P). The work developed fast procedures for the implementation of DFT-P by time decimation. Parametric FFT-P with substitution (in place) and without substitution (no place) are proposed. The estimation of the efficiency of the FFT-P algorithms is given. The practical significance of the work is in the fact that developing algorithms for the parametric fast Fourier transform can reduce the computational costs of performing parametric discrete transformations by three or more orders of magnitude.

Publisher

New Technologies Publishing House

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real Time Method and Algorithms for Fast Discrete Fourier Transform of Discrete Finite Signals;2024 26th International Conference on Digital Signal Processing and its Applications (DSPA);2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3