Stabilization System of Convey-Crane Position Via Sigmoidal Function

Author:

Antipov A. S.1,Krasnova S. A.1

Affiliation:

1. V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Abstract

In this paper, we consider the convey-crane system, which can transport loads for industrial purposes. The mathematical model, describing the motion of convey-crane, is presented by a Lagrangian mechanical system of nonlinear equations with two degrees of freedom and one control action. It is supposed that the rope has no mass, its stiffness is not taken into account, and there is no friction in the joints. The stabilization problem of the desired convey-crane position is posed underuncertain mass inertia characteristics, an action of non-smooth bounded disturbances and incomplete measurements. Based on the passivity property, the control law with linear and sigmoidal parts is constructed for the solution of the problem. The only measurement of the convey-crane position is available without a noise in the measurements. We use the low order observer with sigmoidal corrective action to obtain the needed velocity estimates for the control law. It is shown that the using of sigmoidal function as a prelimit realization of sign-function provides disturbances invariance with the given accuracy. With respect to the smoothness and boundness, sigmoidal function helps to avoid overshoot in the transient responses and excessive consumption of control resources. Moreover, unlike the sign-function, a sigmoidal function is realized in the electromechanical systems with actuator dynamics, in which the physical restrictions on the forces and general moments are posed. The constructed control law with linear and sigmoidal parts is simulated for the convey-crane system in MATLAB- Simulink. The classical PD-controller is simulated too for the purpos e of comparison. The results of modeling are proved the effectiveness of the proposed approach.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3