Design and Genetic Algorithms Based Optimisation of Industrial Adaptive PID FLC System of Liquid Level

Author:

Yordanova S. T.1,Slavov M. N.1,Stoitseva-Delicheva D. R.1

Affiliation:

1. Technical University of Sofia, Faculty of Automation

Abstract

The level control of the precarbonised solution in a soda ash production plant requires intelligent approaches that can tackle process complexity, nonlinearity and industrial environment impact. Therefore, model-free fuzzy logic controllers (FLC) with empirical tuning are suggested which are implemented in a general purpose programmable logic controller (PLC) and operate in real time control. Online adaptation improves the FLC parameters tuning. The aim of the present research is to optimise the adaptation strategy and the parameters of an adaptive PLC PID FLC using genetic algorithms (GA) and simulations for reducing both the system error and the control variance. The PID FLC is based on a PD FLC and a parallel integrator of the system error. A Sugeno model is used for adaptation of the PID FLC tuning parameters. Depending on the level it defines empirically via its input membership functions three linearisation zones and performs soft blending of the local for each zone PD FLC gains and integrator time-constants. Two adaptation strategies are suggested for online auto-tuning of the integrator time-constant only, and together with the PD FLC gain. The local parameters, in turn, are GA optimised. Simulations show that the best system performance is achieved by auto-tuning both PID FLC parameters with optimised local values.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering,Software

Reference18 articles.

1. Thieme Ch. Sodium carbonates, Ullmann’S encyclopedia of industrial chemistry, Vol. 33. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012.

2. Jantzen J. Foundations of fuzzy control. A practical approach, Second Edition, John Wiley and Sons, Chichester, 2013.

3. Ahmad D., Ahmad A., Redhu V., Gupta U. Liquid level control by using fuzzy logic controller, International Journal of Advances in Engineering and Technology, 2012, vol. 4, no. 1, pp. 537—549.

4. Kanagasabai N., Jaya N. Fuzzy gain scheduling of PID controller for a MIMO process, International Journal of Computer Applications, 2014, vol. 91, no. 10, pp. 13—20.

5. Venkataraman A. Design and implementation of adaptive PID and adaptive fuzzy controllers for a level process station, Advances in Technology Innovation, 2021, vol. 6, no. 2, pp. 90—105.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3