Method of Virtual Sensor Design for Faulty Physical Sensor Replacement

Author:

Zhirabok A. N.1,Zuev A. V.2,Bobko E. Yu.1

Affiliation:

1. Far Eastern Federal University

2. Far Eastern Federal University; Institute of Marine Technology Problems

Abstract

The paper considers the problem of virtual sensor design for nonlinear dynamic systems with non-smooth nonlinearities described by continuous-time models for faulty physical sensor replacement. The main purpose of virtual sensors is generating the estimates of the unmeasured components of the considered system to provide additional information for effective control and fault diagnosis. Besides, virtual sensors can be used for faulty physical sensor replacement. The methods of virtual sensor design for solving this problem differ from standard procedure since information from faulty physical sensor does not use to design the virtual sensor replacing this sensor. It is assumed that to solve the problem, the system is equipped by diagnostic system allowing detecting faulty sensor. For every such a sensor, the virtual sensor generating estimate replacing the faulty sensor is designed. To solve the problem, so-called logic-dynamic approach is used which does not guarantee optimal solution but uses only methods of linear algebra to solve the problem for systems with non-smooth nonlinearities. This approach contains three steps. Initially, the nonlinear term is removed from system and linear model is designed. Then, a possibility to estimate the faulty sensor and to insert in the model the transformed nonlinear term is checked. Finally, stability of sensor is provided. The virtual sensor can be designed in identification canonical form or Jordan canonical form. The advantage of the first form is a standard procedure of the virtual sensor design while Jordan form allows obtaining simpler solution. The relations allowing designing the virtual sensor as in identification canonical as Jordan canonical form are derived.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3