On the Regulation of Oscillations of a Galloping-Based Wind Power Harvesting System

Author:

Selyutskiy Y. D.1

Affiliation:

1. Institute of Mechanics of Lomonosov Moscow State University

Abstract

Currently, various possibilities for obtaining energy from renewable sources, in particular, flows of water or wind, are intensively investigated. The most widely used wind power harvesters are those where the working element rotates (a propeller or a vertical axis turbine, such as a Darrieus or Savonius rotor). However, the possibility of using the flow-induced oscillations of elastic structures in order to generate energy is now actively considered. One of the types of such oscillations is galloping, i.e. vibrations of bluff bodies in the direction perpendicular to the incident flow. The occurrence of galloping is due to the fact that aerodynamic forces acting on a bluff body, under certain conditions, create a negative damping. In this paper, we consider a mechanical system consisting of three bodies that can move in a direction perpendicular to the flow. One of these bodies is a square prism, and the other two are material points. The bodies are connected in series with each other and with a fixed support by linear elastic springs. A permanent magnet is rigidly connected to the prism. This magnet moves inside an induction coil. As a result, an electric current is generated in the electrical circuit connected to the coil. For such installations, on the one hand, it is required that galloping occurs at the lowest possible flow speed. On the other hand, at high flow speeds, it is necessary to reduce the amplitude of oscillations so that the device would not be damaged. The influence of the system parameters (in particular, the spring stiffness coefficients) on the stability of the equilibrium and on the characteristics of periodic solutions is studied. It is shown that by changing the stiffness of the springs, it is possible to significantly expand the range of flow speeds where the galloping occurs. The amplitudes of oscillations of bodies increase as the flow speed grows. In order to increase the limit flow speed, at which the amplitudes of oscillations start exceeding the maximum permissible value, a regulating algorithm is proposed. Within the framework of this algorithm, the displacement of one of mass points with respect to the prism is locked/unlocked depending on the current flow speed.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3