Hybrid Model for Metal Temperature Control during Hot Dip Galvanizing of Steel Strip

Author:

Ryabchikov M. Yu.1,Ryabchikova E. S.1,Novak V. S.1

Affiliation:

1. Nosov Magnitogorsk State Technical University

Abstract

The paper proposes a hybrid model for predictive control under step disturbances that lead to a sharp jump in the state of the process. Similar changes occur when controlling the temperature of the steel strip on continuous hot-dip galvanizing units. Periodic changes in strip gauge or strip speed result in abrupt changes in the temperature of the steel at the outlet of the annealing furnace. During such periods deviation control is difficult requiring introduction of tolerances that limit productivity and leading to excessive heating of the metal. The paper shows that the existing proposals for controlling the temperature of the steel strip are not effective enough with a sharp change in the state of the process. The reasons for this are unknown disturbances operating in a wide frequency range and having low-frequency and trend components, as well as many influencing factors. It is shown that the problems of representativeness of the initial accumulated data make it difficult to create complex empirical models, and the level of uncertainty of the processes in the furnace makes it difficult to create complex interpretable models. The proposed hybrid model involves combining two types of simplified interpretable process models, as well as an empirical model based on an artificial neural network. The errors of the interpreted models are shown to be effectively predicted by a neural network in the presence of an additional signal from an observer of unknown disturbances. Computational experiments carried out on the data of one of the units of MMK PJSC in Russia showed that the hybrid model provides high accuracy of steel strip temperature prediction during technological disturbances and does not require frequent reconfiguration.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3