Interval Observer Design for Discrete-Time Nonlinear Dynamic Systems

Author:

Zhirabok A. N.1,Zuev A. V.1,Shumsky A. E.2,Bobko E. Yu.2

Affiliation:

1. Far Eastern Federal University; Institute of Marine Technology Problems

2. Far Eastern Federal University

Abstract

The paper considers the problem of interval observer design for nonlinear dynamic systems described by discrete-time models under external disturbances, measurement noise, and parametric uncertainties. The problem is to design the observer with fewer dimensions than that of the original system; such an observer must generate upper and lower bounds of admissible values of the prescribed nonlinear function of the original system state vector. To solve the problem, special mathematical tool is used. The advantage of this tool is that it allows studying the systems described by models with non-smoo th nonlinearities. To construct interval observer, the reduced-order model of the original system insensitive or having minimal sensitivity to the disturbances is designed. The designing procedure is based on two algorithms: the first one is intended to design the model of minimal sensitivity; the second one is used to reduce the dimension of the model. The rules are formulated to ensure stability based on the prescribed set of the desirable eigenvalues and feedback. The interval observer consists of two subsystems: the first one generates the lower bound, the second one the upper bound. The relations describing both subsystems are given. To construct such an observer in the nonlinear case, the terms of positive and negative influence of variables describing the model are introduced. These terms allow finding out how the upper and lower bounds of these variables will appear in the interval observer. The conditions under which the observer can be designed are given. The theoretical results are illustrated by an example of three tank system. Simulation results based on the package Matlab show the effectiveness of the developed theory.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interval Observer for Fault Identifi cation in Discrete-Time Dynamic Systems;Mekhatronika, Avtomatizatsiya, Upravlenie;2024-06-05

2. Interval parity relations design for fault diagnosis;International Journal of Adaptive Control and Signal Processing;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3