Ladder Type of Leaky Surface Acoustic Waves Filters on Substrate of Lithium Niobate

Author:

Koigerov A.S.,

Abstract

High requirements on the electrical parameters of the filters are made in wireless radio communication systems. A number of tasks require bandpass filters with relative bandwidths of 8-12 %. In this case, the filter must have insertion losses of not more than 10 dB, have a rejection is not worse than 40 dB, unevenness in the bandwidth of not more than 1 dB. In addition, the amplitude frequency responses of the filter must have steep slopes due to the closely spaced frequency bands of neighboring communication systems. Due to its small size and other advantages, ladder resonator filters on surface acoustic waves are widely used in communication systems. To realize the high requirements of this type of filters, it is necessary not only to select all the topology parameters of the individual resonators included in the filter very accurately, but also to have a good computational theory and the necessary material parameters for the selected model at the design stage. Purpose: to show on the example of comparison of calculated and experimental frequency responses of ladder filters the validity of the method of extraction of the necessary parameters obtained for an infinite periodic structure by the finite element method for calculating of finite structures of real inter digital transducer and reflective gratings. Results: the method of extraction of parameters necessary for calculation by the method of connected modes on the basis of P-matrices is offered. The technique is based on the analysis of infinite periodic electrodes by the finite element method. Bandpass filters with a relative bandwidth 8-12 % on a piezosubstrate 49° YX LiNbO3 were designed and manufactured based on the proposed theory. It is shown that for this material, the calculation must take into account the direct radiation of bulk acoustic waves, since the design of ladder type filters, the radiation falls into the projected bandwidth of the filters. These calculations are confirmed by the results of experiments.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3