Neuromorphic Memristive Chips: Design and Technology

Author:

Andreeva N.V., ,Luchinin V.V.,Ryndin E.A.,Anchkov M.G.,Romanov A.A.,Chigirev D.A.,Mazing D.C.,Gerasimova M.I.,Sevostyanov E.N.,Trushlyakova V.V.,Demin Y.A., , , , , , , , , ,

Abstract

Memristive neuromorphic chips exploit a prospective class of novel functional materials (memristors) to deploy a new architecture of spiking neural networks for developing basic blocks of brain-like systems. Memristor-based neuromorphic hardware solutions for multi-agent systems are considered as challenges in frontier areas of chip design for fast and energy-efficient computing. As functional materials, metal oxide thin films with resistive switching and memory effects (memristive structures) are recognized as a potential elemental base for new components of neuromorphic engineering, enabling a combination of both data storage and processing in a single unit. A key design issue in this case is a hardware defined functionality of neural networks. The gradient change of resistive properties of memristive elements and its non-volatile memory behavior ensure the possibility of spiking neural network organization with unsupervised learning through hardware implementation of basic synaptic mechanisms, such as Hebb's learning rules including spike — timing dependent plasticity, long-term potentiation and depression. This paper provides an overview of scientific researches carrying out at Saint Petersburg Electrotechnical University "LETI" since 2014 in the field of novel electronic components for neuromorphic hardware solutions of brain-like chip design. Among the most promising concepts developed by ETU "LETI" are: the design of metal-insulator-metal structures exhibiting multilevel resistive switching (gradient tuning of resistive properties and bipolar resistive switching are combined together in a sin¬gle memristive element) for further use as artificial synaptic devices in neuromorphic chips; computing schemes for spatio-temporal pattern recognition based on spiking neural network architecture implementation; breadboard models of analogue circuits of hardware implementation of neuromorphic blocks for brain-like system developing.

Publisher

New Technologies Publishing House

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IOT Based Pregnant Woman Health Monitoring System;international journal of engineering technology and management sciences;2023

2. The range of marsh frogs (complex Pelophylax ridibundus, Amphibia, Ranidae) in Kazakhstan: Progressive dispersal or cyclic fluctuations?;Proceedings of the Zoological Institute RAS;2022-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3