The Role of Artificial Intelligence in Personalized E-commerce Recommendations

Author:

Sumit KR Sharma ,Shweta Gaur

Abstract

Customized recommendations have emerged as a potent tool to increase user engagement and income in the dynamic realm of online purchasing, where consumers are confronted with a bewildering array of alternatives. the role of AI in creating and providing personalised online purchasing recommendations, including the steps involved, pros, and cons of this tech-driven approach. The study begins by elucidating the fundamentals of personalised recommendations, drawing attention to the significance of tailored online purchasing experiences. Review engines in personalised e-commerce platforms employ a wide variety of AI techniques, including collaborative filtering, content-based filtering, and machine learning algorithms, as discussed in this article.Keywords: - E-commerce, Recommendation engines, Collaborative filtering, Content-based filtering, Machine learning algorithms

Publisher

Shodh Sagar

Reference13 articles.

1. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.

2. Chen, P., & Zhao, J. L. (2012). Social commerce research: An integrated view. Electronic Commerce Research and Applications, 11(1), 1-10.

3. Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to Recommender Systems Handbook. Springer.

4. Sheth, J. N. (2019). AI and Machine Learning for Business: A No-Nonsense Guide to Data Driven Technologies. CreateSpace Independent Publishing Platform.

5. IBM. (2020). The Power of Personalization: A Roadmap for Digital Transformation. Retrieved from https://www.ibm.com/cloud/learn/personalization-roadmap-for-digital-transformation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3