Enhancing DNA Sequencing Workflow with AI-Driven Analytics

Author:

Aravind Ayyagiri ,Anshika Aggarwal ,Shalu Jain

Abstract

The rapid advancements in DNA sequencing technologies have revolutionized genomics, enabling a deeper understanding of genetic information and its implications in various fields such as medicine, agriculture, and evolutionary biology. However, the exponential increase in sequencing data presents significant challenges in terms of data management, analysis, and interpretation. Traditional methods often fall short in handling the complexity and volume of data generated, necessitating the integration of advanced technologies like Artificial Intelligence (AI) to optimize the DNA sequencing workflow. AI-driven analytics offer transformative potential in enhancing DNA sequencing workflows by automating data processing, improving accuracy, and accelerating the pace of discovery. This abstract explores how AI can be integrated into various stages of the DNA sequencing process, including data preprocessing, alignment, variant calling, and downstream analysis. The integration of AI algorithms, such as machine learning and deep learning models, can streamline these processes by reducing manual intervention and minimizing errors. For instance, AI can enhance base calling accuracy, identify rare variants, and predict phenotypic outcomes with higher precision than traditional methods. The AI-driven approach in DNA sequencing is particularly beneficial in handling the challenges posed by next-generation sequencing (NGS) technologies. These technologies generate massive amounts of data that require efficient processing and interpretation. AI algorithms can be trained on large datasets to recognize patterns and anomalies that may be overlooked by human analysts. This capability is crucial in identifying novel mutations, understanding complex gene interactions, and drawing meaningful conclusions from vast genomic datasets.

Publisher

Shodh Sagar

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UI/UX Design Principles for Mobile Health Applications;International Journal for Research Publication and Seminar;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3