A Stackelberg Game Inspired Model of Real-Time Economic Dispatch with Demand Response. (2021)

Author:

,Shakrina Youssef,

Abstract

Traditional electric power systems have several challenges in maintaining their reliability and being able to meet the demand of the consumers at peak hours. Additionally, environmental concerns may arise from several physical limitations in the network that would increase gas emission besides adding extra generation costs. With the advancements in the field of communications amalgamating in the power network, smart grids enable electric consumers to take part in changing the load profile through demand response (DR) programs to help overcome such challenges. In some DR programs where the network’s operators inform the consumers about the updated prices, predicting the change of the consumption pattern that will occur becomes arduous. Especially with the variety of electrical loads and their applications like the residential and industrial consumers and their different sensitivity to prices. For optimal scheduling of generation units, this thesis presents a novel method for the operator to predict market prices and electrical loads under real-time pricing (RTP) DR program in a microgrid. Inspired by the Stackelberg game, the proposed model represents the interaction between the operator and the consumers. The model establishes simulated trading between the network’s operator (leader) optimizing the generation cost and offering market prices to the customers (followers) who optimize their behavior. The interaction is formulated as a one-leader, N-follower iterative game where the optimization problems are solved using deterministic global optimization techniques. The proposed model considers a detailed representation of the industrial and residential loads. Simulations are performed on several microgrid systems where results show a significant improvement in the projected retail prices and electrical loads. Finally, this thesis also examines the impact of energy storage systems (ESS) on the operation of an industrial facility in real-time demand response programs. A model is developed to optimally manage the energy storage and operation of the industrial load. Additionally, an approach to the sizing of the ESS is proposed. Stochastic modeling of electricity prices based on historical data is used to this end. The optimization models were tested on a generic industrial unit. Results show the benefits of ESS in increasing profit and highlight the impact of its installation cost on its feasibility.

Publisher

Lebanese American University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal BESS Sizing for Industrial Facilities Participating in RTP DR;International Transactions on Electrical Energy Systems;2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3