Affiliation:
1. SUEK JSC
2. MIREA – Russian Technological University
3. National University of Science and Technology “MISiS” (NUST “MISiS”)
Abstract
Underground mining operations are connected with significant risks of technogenic accidents, which can be catastrophic. Mitigating the consequences of such phenomena directly depends on the reliability and efficiency of information about the state of parameters of many technological processes, mine workings and facilities located in them. At failure of standard systems of industrial telemetry in conditions of underground mining the creation of new information channels and places of information measurementbecomes practically impossible in case of emergency situation development. This predetermines necessity of use of essentially new systems of gathering and transfer of the information, based on robotized autonomous complexes. The task of acquiring reliable information about the situation in an emergency mine working with the help of drones (unmanned aerial vehicles or UAV) in order to make rational decisions in the course of the rescue operation is quite relevant. The aim of the paper was to develop a system of automatic control of an unmanned aerial vehicle (UAV) movement in confined space of a mine working, with significant perturbations of the mine air flow. The mathematical model of UAV movement in mine conditions, based on Euler angles or quaternions, was substantiated. The method of positioning through triangulation with the use of radio beacons was accepted as the basic method that allowed to determine the current position of an UAV. It was proposed to solve the problem of creation of the automatic system for an unmanned aerial vehicle movement control with the use of a hierarchical multiloop control system. The route planning algorithm was formed on the basis of the Dijkstra algorithm. For this purpose, discretization of the future motion space was performed, a labeled connected graph was constructed, on which the arc weights were the distances between the route points. A simulation experiment was implemented. The average deviation from the planned trajectory when flying at a speed of 10 m/s with payload mass up to 0.6 kg did not exceed 1 m, and the maximum deviation was unacceptably large. When flying at 6 m/s with payload mass up to 0.6 kg the average deviation did not exceed 0.3 m, and the maximum deviation, 1.2 m. The results of simulation of movement along the route towards the disturbing mine airflow showed that the control system allowed the UAV with payload of 0.6 kg to withstand the oncoming flow up to 8 m/s. It was obtained that with payload mass of 0.6 kg, the braking distance does not exceed 6 m if the UAV had a speed of 6 m/s, and the braking distance does not exceed 12 m at the speed of 10 m/s. The performed simulation studies confirmed the operating capability of the developed system for automatic motion control.
Publisher
National University of Science and Technology MISiS
Subject
Industrial and Manufacturing Engineering,Process Chemistry and Technology,Geology,Geotechnical Engineering and Engineering Geology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献