Chemical additive based on sodium oleate and linseed oil for preparation coal dust suppression composition

Author:

Golubkov V. A.1ORCID,Gorenkova G. A.2ORCID,Vorozhtsov E. P.2ORCID,Bespalova M. A.2ORCID,Bortnikov S. V.2ORCID

Affiliation:

1. Institute of Chemistry and Chemical Technology of the Siberian Branch of the RAS

2. Khakassian State University named after N. F. Katanov

Abstract

The mining, transportation, and processing of coal involve the formation and emission of significant amounts of particulate matter, which includes coal dust. The most commonly employed method for controlling coal dust in an air is water spray dust suppression (hydrodedusting). This method is founded on water’s capacity to moisten dust particles and bond them to both each other and the surfaces where the dust settles. One notable limitation of this method is the coal’s hydrophobic nature, which hinders water from wetting coal dust particles. In order to overcome this, surfactants are introduced into the water to increase the wettability of the hydrophobic coal particle surface. In this paper, we proposed a dust suppressant composition consisting of oleic acid, sodium hydroxide, and linseed oil in water. We examine its properties and evaluated its ability to enhance the wettability of coal dust. We have identified the most effective concentration, resulting in a working solution that improves the wettability of coal dust by 87 % compared to water, surpassing the wettability of most known reagents. The proposed composition contains 140 mg/L oleic acid, 100 mg/L sodium hydroxide, and 70 mg/L linseed oil in water. The simplicity of this composition, its minimal impact on the environment and human health, and its negligible influence on the further use of coal raw materials make this wetting agent composition highly promising for application in coal industry technologies of water spray dust suppression.

Publisher

National University of Science and Technology MISiS

Subject

General Engineering,Process Chemistry and Technology,Geology,Geotechnical Engineering and Engineering Geology

Reference24 articles.

1. Ayoglu F. N., Acikgoz B., Tutkun E., Gebedek S. Descriptive characteristics of coal workers’ pneumoconiosis cases in Turkey. Iranian Journal of Public Health. 2014;43(3):389. URL: https://ijph.tums.ac.ir/index.php/ijph/article/view/4162

2. Pollock D., Potts J. D., Joy G. Investigation into dust exposures and mining practices in mines in the southern Appalachian Region. Mining Engineering. 2010;62:44.

3. Ross M., Murray J. Occupational respiratory disease in mining. Occupational Medicine. 2004;54(5):304–310. https://doi.org/10.1093/occmed/kqh073

4. Perret J. L., Plush B., Lachapelle P. et al. Coal mine dust lung disease in the modern era. Respirology. 2017;22(4):662–670. https://doi.org/10.1111/resp.13034

5. Cao W., Gao W., Peng Y., Liang J., Pan F., Xu S. Experimental and numerical study on flame propagation behaviors in coal dust explosions. Powder Technology. 2014;266:456–462. https://doi.org/10.1016/j.powtec.2014.06.063

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3