Effect of explosive detonation velocity on the degree of rock pre-fracturing during blasting

Author:

Khokhlov S. V.1ORCID,Vinogradov Yu. I.1ORCID,Makkoev V. A.1ORCID,Abiyev Z. A.1ORCID

Affiliation:

1. Empress Catherine II Saint Petersburg Mining University

Abstract

At many quarries for the extraction of building stone there is a problem of increased output of fines after all stages of crushing and grinding, which leads to a decrease in the economic performance of mining enterprises. The fine fraction is formed by the crushing / grinding of prefractured rock mass. Reducing the intensity and size of the prefracture zones will lead to a solution to the problem at hand. To determine the effect of explosive detonation properties on the degree of structural weakening of a rock mass, studies were conducted to measure the detonation velocity, stresses generated by a blast in the rock mass, as well as laboratory studies of microfracturing by X-ray computer microtomography. The size of the prefracture zones increases from 33 to 77 charge radii with increasing the detonation velocity from 2 to 5.2 km/s. The dependence of the number of microdefects (microfractures) generated by a blast on the velocity of explosive detonation takes the formof an exponent for the near zone and is linear for the distances far from the blast. According to the data of the experiments conducted at short distances (10R), the density of induced microfracturing N is within ≈5 thousand pcs/cm3, and with increasing the detonation velocity it increases to ≈13.8 thousand pcs/cm3. At medium (40R) and long (70R) distances, N increases from ≈750 to ≈2,400 pcs/cm3 and from 0 to ≈200 pcs/cm3, respectively. Using explosives with a reduced detonation velocity allows reducing the “surplus” impact on a rock mass and thus reducing the intensity of prefracture in the zone of controlled crushing during a blast. The study allowed obtaining quantitative parameters of the intensity and size of the prefracture zones, which compose the supplement to findings of historical studies on qualitative determination of prefracture.

Publisher

National University of Science and Technology MISiS

Reference51 articles.

1. Akhtyamov V. F., Khafizova E. N. Influence of technological non-metallic production wastes on heavy weight concrete properties. The Russian Automobile and Highway Industry Journal. 2018;15(2):261–268. (In Russ.) https://doi.org/10.26518/2071-7296-2018-2-261-268

2. Khafizova E. N., Akhtyamov V. F., Panchenko I. F., Panchenko D. A. Micro-fine component of stone screening dust in heavy weight cement concrete. Innovation & Investment. 2019;(9):261–266. (In Russ.) URL: https://www.innovazia.ru/upload/iblock/398/gxovlpzi12czrbffn0jydgt9ks8se85k/%E2%84%969%202019.pdf

3. Samukov A. D. Complex recycling of crushed aggregates waste. Ecology and Industry of Russia. 2019;23(7):15–19. (In Russ.) https://doi.org/10.18412/1816-0395-2019-7-15-19

4. Ding X., Ao Z., Li X. et al. The mechanism of plugging open-pit mine cannon holes and the modification of plugging materials. Sustainability. 2023;15(5):4257. https://doi.org/10.3390/su15054257

5. Moldovan D. V., Chernobay V. I., Yastrebova K. N. The influence of composite material in the stemming design on its operability. Mining Informational and Analytical Bulletin. 2023;(9–1):110–121. (In Russ.) https://doi.org/10.25018/0236_1493_2023_91_0_110

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3