Thermodynamic stability of microheterogenic states in Fe – Mn – C melts

Author:

Sinitsin N. I.1ORCID,Chikova O. A.2

Affiliation:

1. Ural Federal University named after the first President of Russia B.N. Yeltsin

2. Ural Federal University named after the first President of Russia B.N. Yeltsin; Ural State Pedagogical University

Abstract

Possibility of existence of microheterogeneous states in Fe – Mn – C melts was analyzed carried out according to the concepts of chemical thermodynamics. Microheterogeneous state of a chemically inhomogeneous Fe – Mn – C melt was understood as presence of dispersed Fe – C particles in it, which are suspended in Mn – C environment and separated from it by interface. Hypothesis of microheterogeneous state of Fe – Mn – C melts is supported by numerous experimental data on their thermodynamic and physical properties. Identification of anomalies in temperature dependences of physical properties of Fe – Mn – C melts made it possible to determine temperature values above which the melt superheating treatment (MST) leads to destruction of microheterogeneity, i.e., the liquid – liquid structure transition (LLT) in the melt. LLT is understood by authors as a structural transition “microheterogeneous melt – homogeneous solution” and this is expressed in destruction of microheterogeneous state when the melt is heated to a temperature determined for each composition (MST). This paper describes a method for theoretical determination of temperature range where microheterogeneous state of the Fe – Mn – C melt is thermodynamically stable. Thermodynamic stability of dispersed Fe – C particles in the Mn – C medium was estimated according to the equations proposed by Kaptay for a regular solution. It was assumed that interface between the melt of dispersed Fe – C particles with sizes from 2 to 34 nm, distributed in the Mn – C dispersion medium and separated from it by an interface with increased carbon content. This result of the assessment is consistent with the data on size of the structural units of a viscous flow obtained earlier within framework of the theory of absolute reaction rates.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3