Metal degassing in vacuum-chamber of circulating vacuum degasser of JSC EVRAZ NTMK

Author:

Metelkin A. A.1,Sheshukov O. Yu.2,Tkachev A. S.3,Kovyazin I. V.3,Chiglintsev A. V.3,Shevchenko O. I.1

Affiliation:

1. Nizhny Tagil Technological Institute (Branch) Ural Federal University named after the first President of Russia B.N. Yeltsin

2. Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

3. JSC “EVRAZ Nizhny Tagil Metallurgical Plant”

Abstract

For smelting of high-quality metal for transport purposes, it is necessary to limit the content of harmful impurities in it, including dissolved gases. For example, hydrogen content in the finished product should not exceed more than 2 ppm. In order to obtain low residual hydrogen content in steel in the converter shop of JSC EVRAZ NTMK, the transport metal is processed at circulating vacuuming plants. Circulating vacuum degasser is the last stage of steel processing before casting on continuous casting machine, so it is important to study and improve the technological processes in it. To investigate the physico-chemical processes occurring in this metallurgical unit, a hydrodynamic model of the system circulating vacuum degasser – steel ladle was created. Based on theoretical calculations and experiments conducted on a physical model, the main dependencies between the structural and technological parameters of the metallurgical unit were determined. The resulting equation makes it possible to determine the rate of metal circulation in vacuum chamber depending on gas flow rate supplied to inlet snorkel and its inner diameter at circulating vacuuming plants designed for metal processing in steel ladles with a capacity of 140 – 180 tons. Theoretical calculations were confirmed by practical smelting in a steelmaking unit. It is shown that during the wear of lining of the inlet snorkel vacuum chamber, in order to obtain stable residual hydrogen content, it is necessary to make changes in the technological process of vacuuming. Additionally, rational technological parameters of steel processing at the circulating vacuuming plant were determined on the basis of theoretical calculations.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3