Influence of carbon and oxygen impurities on the migration rate of <110> tilt boundaries in austenite

Author:

Zorya I. V.1ORCID,Poletaev G. M.2ORCID,Rakitin R. Yu.3ORCID

Affiliation:

1. Siberian State Industrial University

2. Polzunov Altai State Technical University

3. Altai State University

Abstract

The effect of impurity carbon and oxygen atoms on the migration rate of the tilt boundaries with the misorientation axis <110> in γ-Fe with fcc crystal lattice was studied by the method of molecular dynamics. Dependences of energy of the considered boundaries and rate of their migration at a temperature of 1600 K on the misorientation angle were obtained. The migration rate of <110> tilt boundaries under the same conditions turned out an order of magnitude lower than the migration rate of <111> and <100> boundaries, which is primarily due to the relatively low energy of <110> boundaries. In addition, the low-angle <110> tilt boundaries are unique compared to other tilt boundaries – grain­boundary dislocations in them are ordinary perfect edge dislocations with even cores that do not contain jogs periodically located on them as in <111> and <100> boundaries. The introduction of impurity carbon and oxygen atoms led to a significant decrease in migration rate of the grain boundaries. The binding energies of impurity carbon and oxygen atoms with grain-boundary dislocations in the austenite were calculated. The obtained values correlate well with the dependences of migration rate of <110> boundaries on the impurities concentration. Effect of impurities on migration of the boundaries in austenite turned out to be stronger than in the previously studied nickel and even more so in silver, which can be explained by the relatively low value of the electronegativity of iron atoms in comparison with nickel and silver. A higher value of the binding energy with dislocations in austenite and, accordingly, a greater effect on the migration rate of grain boundaries were obtained for carbon atoms.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3