Affiliation:
1. Institute of Metallurgy of the UB RAS
Abstract
The main product of ferroalloy plants is standard ferroalloys. They often do not have all the necessary service characteristics and are not very suitable for metal processing in a ladle. The developing progressive technology of steelmaking is forced to adapt to the existing range of ferroalloys, the standards for which have not been updated for 50 years or more. In addition, in recent years, the sources and markets of ferroalloy raw materials have changed, and their quality and content of leading elements have decreased. This makes it difficult or excludes the possibility of obtaining ferroalloys according to existing standards. In this regard, the production of more efficient ferroalloys of a new generation is required, suitable for progressive processes in the developing areas of ferrous and non-ferrous metallurgy 795 and smelted from non-traditional types of domestic ore raw materials. These include complex or multicomponent ferroalloys containing, in addition to iron, two or more functional elements. Complex ferroalloys should be created in the most favorable combinations of component. It contributes to the necessary effective impact on the iron-carbon melt with a high degree of assimilation of useful elements in it. The creation of scientific foundations for the formation of new compositions of multicomponent ferroalloys with high consumer properties, and the development of physicochemical processes for obtaining these alloys from unconventional ore raw materials contributes to solving the problems of developing compositions of effective new generation ferroalloys and expanding the ore base of ferroalloy production. When using the developed method of designing the composition of complex ferroalloys using unconventional raw materials, melting technologies were developed; various alloys of the systems were obtained and applied on a laboratory and industrial scale: Fe – Si – Cr, Fe – Si – B, Fe – Si – Ba – Ca, Fe – Si – Al – Nb, Fe – Si – Ca – Mg, Fe – Si – V – Ca – Mn, Fe – Si – Al.
Publisher
National University of Science and Technology MISiS
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献