Mechanical and acoustic properties of deformable alloys

Author:

Barannikova S. A.1ORCID,Nadezhkin M. V.1ORCID,Iskhakova P. V.1ORCID

Affiliation:

1. Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences

Abstract

The paper is devoted to correlation dependences of ultrasound velocity with characteristics of strength and plasticity in uniaxial tension of Fe18Cr10Ni austenitic stainless steel with a unique set of physical and mechanical properties. Such a successful set of mechanical properties is provided by dislocation slip and twinning, the formation of stacking faults, and martensitic transformation. It should be noted that the assessment of changes in the mechanical characteristics of metals (especially at low temperatures) is a very laborious task and requires the use of non-destructive control methods. Experimental data was obtained using a bench designed to synchronize with recording of the “stress – strain” diagram for determining the values of ultrasound velocity propagation and the attenuation coefficient of the ultrasonic wave as a function of deformation. Measurement of ultrasound velocity propagation was reduced to determining the time of passage of an ultrasonic Rayleigh pulse between transmitting and receiving transducers. Attenuation was determined from the change in pulse shape. The pulses were excited by a piezoelectric transducer at a frequency of 5 MHz. The authors experimentally studied static loading effect on acoustic characteristics and calculated the destruction parameters. The propagation ultrasound velocity in deformable material is an informative feature for analyzing the nature of the processes that control plasticity. The effect of test temperature in the range 180 K ≤ T ≤ 320 K on acoustic and mechanical characteristics of the steel was studied to ensure control of its structural state and mechanical properties by means of non-destructive testing. The temperature range was chosen taking into account the possibility of direct γ → α′ martensitic transformation.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3