Structure and properties of low-alloy steel 10G2FBYu after rolling in embossed rolls under conditions of electroplasticity

Author:

Pochivalov Yu. I.1ORCID

Affiliation:

1. Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences

Abstract

The article describes the features of grain structure formation and mechanical properties of low-alloy steel 10G2FBYu after rolling in flat and embossed rolls under the conditions of ordinary and electroplastic deformation. When rolling in embossed rolls, a significant non-uniformity of deformation is achieved over the rolling cross-section, expressed in localized macroshifts directed at an angle of 45° to the rolling plane. It is shown that local shear deformation during rolling in embossed rolls leads to an increase in the ultimate strength of the steel under study with a decrease in plasticity of the rolled material. Rolling 10G2FBYu steel in embossed rolls under conditions of electroplasticity provides maximum strength characteristics with a high hardening coefficient at the stage of macrodeformation. At the same time, the plasticity is maintained at a level sufficient for technological purposes. Structural metallographic and electron microscopic studies showed that increase in strength of steel when rolling in embossed rolls under conditions of electroplastic effect is caused by the refinement of ferrite grains to sizes less than 0.5 µm. Fractographic studies revealed changes in the nature of fracture in steel during rolling in embossed rolls, which is expressed in appearance of areas of brittle fracture in the rolled samples. Rolling under conditions of electroplasticity increases the proportion of ductile fracture and ductility of 10G2FBYu steel.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3