Structure and wear characteristics of cast iron after laser surface modification

Author:

Yares’ko S. I.1ORCID,Guseva G. V.1ORCID,Shcherbakov V. I.1ORCID,Kazakevich P. V.1ORCID

Affiliation:

1. Samara Branch of Lebedev Physical Institute, Russian Academy of Sciences

Abstract

The paper presents the results of studies of macro- and microstructure of alloyed chromium-vanadium cast iron after laser treatment (LT) in air using a continuous laser source with a variation in its power from 60 to 100 W and scanning speed of the laser beam varying from 5 to 17 mm/s. Metallography and durometry methods were used to determine composition and structure of the laser exposure zones (LEZ). It is shown that LT with a slight melting of the surface leads to a significant increase in microhardness in LEZ. In this case, martensite is the main structure in the near-surface layer of LEZ in the melting zone, and ledeburite structure prevails in the quenching zone. For the studied LT modes, LEZ depth is 220 – 310 μm. At the same time, microhardness is more than 2.5 – 4.2 times higher than microhardness of the base metal and reaches 820 HV0.1, that is a significant factor in increasing the wear resistance of the material. On the contrary, no significant structural changes were found in the case of LT without melting the surface. In order to identify the role of LT in wear of cast iron, sliding friction tests were carried out according to the “disk – finger” scheme at a pressure in the contact zone of 12.5 MPa and indenter rotation speed of 580 rpm. According to the test data, a significant decrease in linear wear and the wear intensity after the surface melting was found. The wear intensity is reduced by more than 100 times, and linear wear – by more than 50 times. The characteristics of LEZ surface cause a decrease in the friction coefficient by 30 % relative to the untreated surface.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3