Generation of increased mechanical properties of Cantor high­entropy alloy

Author:

Gromov V. E.1ORCID,Rubannikova Yu. A.1ORCID,Konovalov S. V.2ORCID,Osintsev K. A.2ORCID,Vorob’ev S. V.1ORCID

Affiliation:

1. Siberian State Industrial University

2. Siberian State Industrial University; Samara National Research University

Abstract

The article considers a brief review of the last years of Russian and foreign research on the possibilities of improving mechanical properties of the Cantor quinary high­entropy alloy (HEA) with different phase composition in wide temperature range. The alloy, one of the frst created equimolar HEAs with FCC structure, needs mechanical properties improvement in accordance with possible felds of application in spite of its high impact toughness and increased creep resistance. It has been noted that bimodal distribution of the grains by sizes under severe plastic torsional strain at high pressure of 7.8 GPa of cast alloy and subsequent short­time annealing at 873 and 973 K can change strength and plastic properties. Nanodimensional scale of the grains surrounded by amorphous envelope has been obtained for HEA produced by the method of magnetron sputtering and subsequent annealing at 573 K. In such a two­phase alloy nanohardness amounted to 9.44 GPa and elasticity modulus – to 183 GPa. Using plasticity effect induced by phase transformation in (CrMnFeCoNi)50Fe50 alloy obtained by the method of laser additive technology the ultimate strength of 415 – 470 MPa has been reached at high level of plasticity up to 77 %. It has been ensured by FCC → BCC diffusionless transformation. It is shown that difference in mechanisms of plastic strain of cast alloy at 77 K and 293 K (dislocation glide and twinning) determines a combination of increased “strength­plasticity” properties. Samples for generation of twins prestrained at 77 K exhibit increased strength and plasticity under subsequent loading at 293 K in comparison with the unstrained ones. For HEA obtained by laser additive technology this way of increasing properties is also true. The way of improving mechanical properties at the expense of electron beam processing is noted. The attention is paid to the necessity of taking into account the role of entropy, crystal lattice distortions, short­range order, weak diffusion and “cocktail” effect in the analysis of mechanical properties.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3