Affiliation:
1. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Abstract
This review discusses the main methods for producing spherical powder particles of corrosion-resistant steels as a material widely used in all industries. Also the examples of products made by modern additive methods are described. Currently, spherical powder particles of corrosion-resistant steels are used in the following additive methods: selective laser melting, selective laser sintering, direct laser sintering, and electron beam melting. Each of these methods has its own requirements for the characteristics of spherical powder particles of corrosion-resistant steels. The review provides a brief description of the principles of operation of each method and the requirements for spherical powder particles of corrosion-resistant steels. It also considers a detailed description of each method of additive manufacturing with a description of the principle of operation and specific examples of obtaining spherical particles of corrosion-resistant steel powders with indication of their properties (morphology, structural features, chemical composition, fluidity, bulk density). A comparative analysis was carried out with a description of disadvantages and advantages of each method. Examples of the use of spherical particles of corrosion-resistant steel powders for the manufacture of products by various additive methods (including post-processing) are given with description of the final products characteristics. Based on the data presented, a conclusion was made about the preferred methods for obtaining spherical particles of corrosion-resistant steel powders for specific additive methods used in modern industry. The review considers the following methods for producing spherical powder particles: water atomization (atomization of liquid metal with a jet of water under pressure); gas atomization (atomization of the melt with a jet of inert gas (argon or nitrogen) under pressure); centrifugal atomization (atomization of molten metal with a high-speed rotating disc); ultrasonic atomization (atomization of liquid metal by ultrasound); non-contact atomization (atomization of liquid metal with a powerful pulse of electric current); plasma wire spraying; plasma spraying of a rotating electrode; plasma spheroidization.
Publisher
National University of Science and Technology MISiS
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献