Increasing the corrosion properties of duplex steel with REM modification

Author:

Karasev V. S.1ORCID,Kodzhaspirov G. E.1,Fedorov A. S.1ORCID,Al’khimenko A. A.1ORCID,Zhitenev A. I.2ORCID

Affiliation:

1. Peter the Great St. Petersburg Polytechnic University

2. PJSC “Novolipetsk Metallurgical Plant”

Abstract

Duplex stainless steels are a modern class of materials with a unique combination of high corrosion and mechanical properties. Due to this, they can be widely used in machine parts and aggregates in fields with aggressive oil and gas production conditions. One of the disadvantages of these materials is their tendency to local corrosion damage on non-metallic inclusions, other things being equal, formed during smelting and casting. To control the purity of steel in conditions of open induction smelting, it is effective to use modification with rare earth metals (REM). Therefore, the purpose of this work was to determine the optimal content of REM in duplex steel to increase corrosion properties. Thermodynamic modeling of the formation of nonmetallic inclusions in duplex corrosion-resistant steel S32750 was carried out and the results of calculations were compared with the experimental data. It is shown that there is an optimal concentration of REM at which contamination with inclusions is minimal due to favorable conditions for their removal, and with a further increase in consumption it increases due to coagulation of a large number of refractory oxides. Electrochemical tests were performed and parameters such as corrosion potential, pitting formation potential and the basis of pitting resistance of experimental steels were determined. Therefore, the corrosion properties of the investigated duplex steel are significantly improved when treated with REM. The electro­chemical potentials of different types of inclusions are evaluated on a qualitative level. Based on the obtained results on corrosion resistance and contamination of the studied castings, the optimal amount of REM introduced for modifying inclusions is 0.05 % (0.65Ce + 0.35La).

Publisher

National University of Science and Technology MISiS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3