Structure and phase composition formation of cast aluminum matrix composites during multiple remelting

Author:

Prusov E. S.1,Deev V. B.2,Aborkin A. V.1,Panfilov A. A.1,Kireev A. V.1

Affiliation:

1. Vladimir State University n.a. A.G. and N.G. Stoletovs

2. Wuhan Textile University; National University of Science and Technology «MISIS»

Abstract

The lack of understanding as to the nature of interfacial interaction between reinforcing particles and the matrix alloy during repeated remelting of cast composite materials is one of the problems hindering the expansion of their industrial application. This research is aimed at establishing the effect of repeated remelting of AK12 + 10 vol.% SiC aluminum matrix composites on the retention and chemical stability of silicon carbide reinforcing particles. It is shown that an increase in the number of remelting iterations is not accompanied by any new phases appearing at the interfaces between particles and the matrix, which indicates the stability of the SiC reinforcing phase in aluminumsilicon melts under the considered temperature-time and concentration conditions. Repeated remelting of aluminum matrix composites with silicon carbide shifts the particle distribution uniformity towards a more uniform distribution degree (on average 0.81046 at the first remelting iteration, 0.6901 at the second one and 0.5609 at the third one) and slightly reduces their average sizes (from 70.74 μm at the first iteration to 65.76 μm at the second one and 61.21 μm at the third one), apparently due to particle fragmentation that leads to an increase in the quantity of finer particles. At the same time, the share of the area occupied by particles in the section regions under consideration remains practically unchanged (10.9293, 10.9607 and 11.6483 % at the first, second and third remelting iterations, respectively). In the course of repeated remelting of Al–SiC aluminum matrix composites, processes of reinforcing particle redistribution occur that lead to the destruction of agglomerates even without intensive mixing with an impeller. Due to this, the uniformity of particle distribution in the structure of secondary aluminum matrix composite ingots can be significantly improved.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3