β-Ti-based alloys for medical applications

Author:

Straumal B. B.1,Gornakova A. S.2,Kilmametov A. R.2,Rabkin E.3,Anisimova N. Yu.4,Kiselevsky M. V.4

Affiliation:

1. Chernogolovka Scientific Centre of Russian Academy of Sciences (ChSC RAS); Institute of Solid State Physics of Russian Academy of Sciences (ISSP RAS); National University of Science and Technology (NUST) «MISIS»

2. Chernogolovka Scientific Centre of Russian Academy of Sciences (ChSC RAS)

3. TECHNION-Israel Institute of Technology

4. N.N. Blokhin National Medical Research Centre of Oncology

Abstract

Titanium alloys have been used for medical purposes for over 60 years. They are used in the manufacture of artificial heart valves, stents of blood vessels, endoprostheses of bones and joints (shoulder, knee, hip, elbow), for auricle reconstruction, in facial surgery, and also as dental implants. In first-generation materials (such as commercially pure titanium or VT6 alloys), the matrix consisted of the α-Ti phase or α-Ti and β-Ti mixture. Unfortunately, implants made of first-generation materials require replacement after 10–15 years of usage. This is due to the degradation of implants and loss of contact with the bone. Recently, these materials have been replaced by β-Ti alloys. These second- generation materials make it possible to exclude the harmful effect of aluminum and vanadium ions released during the gradual implant corrosion, and their elastic modulus is closer to the values for living bone than those for α and α+β alloys. Important areas in the development of β-Ti alloys include increasing their mechanical strength, fatigue strength, corrosion resistance and biocompatibility. New methods for the production and thermo-mechanical processing of titanium alloys arise and develop such as additive technologies or severe plastic deformation. Expensive alloying elements (such as tantalum, zirconium or niobium) are quite successfully replaced with cheaper ones (for example, chromium and manganese). As a result, the properties of titanium implants are gradually getting closer to that of the human bone, and their service life is steadily increasing. Therefore, this paper describes a comparative analysis conducted in relation to β-titanium-based alloys for medical applications.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Study of Chip Shrinkage in Turning Titanium Alloy VT6;Journal of Physics: Conference Series;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3