Viscosity of conventional cryolite-alumina melts

Author:

Rudenko A. V.1,Kataev A. A.1,Tkacheva O. Yu.2,Zaykov Yu. P.2,Pyanykh A. A.3,Arkhipov G. V.3

Affiliation:

1. Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

2. Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the First President of Russia B.N. Yeltsin (UrFU)

3. «RUSAL ETC» LLC

Abstract

The study covers the viscosity of NaF–AlF3–CaF2–Al2O3 conventional cryolite-alumina melts with a cryolite ratio CR = 2.3 depending on the CaF2, Al2O3 content and temperature. The viscosity of cryolite-alumina electrolyte samples prepared under laboratory conditions and electrolyte samples of industrial electrolytic cells was measured by the rotary method using the FRS 1600 rheometer («Anton Paar», Austria). The laminar flow region of the melt determined according to the dependence of viscosity on shear rate at a constant temperature was 10–15 s–1 for all the studied samples. The temperature dependence of cryolite-alumina melt viscosity was measured at a shear rate of 12 ± 1 s–1 in the temperature range from liquidus to 1020 °C. It was shown that the change in the viscosity of all samples in the investigated temperature range (50–80 °С) can be described by a linear equation. The average temperature coefficient of linear equations describing the viscosity of cryolite-alumina electrolytes prepared in laboratory conditions was 0.005 mPа· s/°С, which is 2 times less compared to industrial cell electrolytes. Thus, the change in the viscosity of industrial cell electrolytes with increasing temperature is more significant. Both alumina and calcium fluoride additives increase the cryolite melt viscosity. The viscosity of samples prepared with the conventional composition NaF–AlF3–5%CaF2–4%Al2O3 (CR = 2.3) is equal to 3.11 ± 0.04 mPа· s at an electrolysis operating temperature of 960 °C, while the viscosity of industrial cell electrolytes with the same cryolite ratio is 10–15 % higher and falls in the range of 3.0–3.7 mPа· s depending on the electrolyte composition.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3