Effect of lithium on the anodic behavior of AlTi0.1 aluminum conducting alloy in NaCl electrolyte environment

Author:

Ganiev I. N.1ORCID,Rakhmatulloeva G. M.2ORCID,Zokirov F. Sh.1ORCID,Eshov B. B.2ORCID

Affiliation:

1. Tajik Technical University named after M.S. Osimi

2. Center for Research of Innovative Technologies of the National Academy of Sciences of Tajikistan

Abstract

Aluminum ranks as the fourth most conductive metal, trailing behind silver, copper, and gold in electrical conductivity. Annealed aluminum demonstrates an approximate 62 % conductivity of the International IACS compared to annealed standard copper, which registers 100 % IACS at t = 20 °C. Because to its low specific gravity, aluminum exhibits twice the conductivity per unit mass compared to copper, showcasing its potential economic advantage as a material for conducting electricity. For equal conductivity (in terms of length), an aluminum conductor exhibits a cross-sectional area 60 % larger than that of copper, while weighing only 48 % of copper's mass. However, the widespread use of aluminum as a conductor in electrical engineering is often challenging and sometimes unfeasible due to its inherent low mechanical strength. Enhancing this crucial property is achievable through the addition of dopants. However, this approach tends to elevate mechanical strength at the cost of noticeable reductions in electrical conductivity. This study investigates the impact of lithium addition on the anodic behavior of an A5 aluminum conductor alloy, specifically modified with 0.1 wt.% Ti (AlTi0.1 alloy), within a NaCl electrolyte environment. The experiments were conducted utilizing the potentiostatic method in potentiodynamic mode at a potential sweep rate of 2 mV/s. Results indicate that the introduction of lithium to the AlTi0.1 alloy leads to a shift in the potentials of free corrosion, pitting, and repassivation towards positive values. Additionally, the corrosion rate decreases by 10–20 % with the incorporation of 0.01–0.50 wt.% Li. Moreover, varying concentrations of chloride ions in the NaCl electrolyte prompt fluctuations in the corrosion rate of the alloys and a shift in electrochemical potentials towards the negative range.

Publisher

National University of Science and Technology MISiS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3