Affiliation:
1. Tajik Technical University named after M.S. Osimi
2. Center for Research of Innovative Technologies of the National Academy of Sciences of Tajikistan
Abstract
Aluminum ranks as the fourth most conductive metal, trailing behind silver, copper, and gold in electrical conductivity. Annealed aluminum demonstrates an approximate 62 % conductivity of the International IACS compared to annealed standard copper, which registers 100 % IACS at t = 20 °C. Because to its low specific gravity, aluminum exhibits twice the conductivity per unit mass compared to copper, showcasing its potential economic advantage as a material for conducting electricity. For equal conductivity (in terms of length), an aluminum conductor exhibits a cross-sectional area 60 % larger than that of copper, while weighing only 48 % of copper's mass. However, the widespread use of aluminum as a conductor in electrical engineering is often challenging and sometimes unfeasible due to its inherent low mechanical strength. Enhancing this crucial property is achievable through the addition of dopants. However, this approach tends to elevate mechanical strength at the cost of noticeable reductions in electrical conductivity. This study investigates the impact of lithium addition on the anodic behavior of an A5 aluminum conductor alloy, specifically modified with 0.1 wt.% Ti (AlTi0.1 alloy), within a NaCl electrolyte environment. The experiments were conducted utilizing the potentiostatic method in potentiodynamic mode at a potential sweep rate of 2 mV/s. Results indicate that the introduction of lithium to the AlTi0.1 alloy leads to a shift in the potentials of free corrosion, pitting, and repassivation towards positive values. Additionally, the corrosion rate decreases by 10–20 % with the incorporation of 0.01–0.50 wt.% Li. Moreover, varying concentrations of chloride ions in the NaCl electrolyte prompt fluctuations in the corrosion rate of the alloys and a shift in electrochemical potentials towards the negative range.
Publisher
National University of Science and Technology MISiS