The efficiency of multithreaded computing in casting simulation software

Author:

Bazhenov V. E.1ORCID,Koltygin A. V.1ORCID,Nikitina A. A.1ORCID,Belov V. D.1ORCID,Lazarev E. A.2

Affiliation:

1. National University of Science and Technology «MISIS»

2. PJSC «UEC-Kuznetsov»

Abstract

The utilization of computer simulation software for casting process simulation is becoming essential in the advancement of casting technology in aviation and other high-tech engineering fields. With the increase in the number of computational cores in modern CPUs, the use of multi-threaded computations is becoming increasingly relevant. In this study, the efficiency of multi-threaded computations in modeling casting processes was evaluated using finite element method casting simulation software ProCast and PoligonSoft, which utilize parallel computing architectures with distributed (DMP) and shared (SMP) memory, respectively. Computations were performed on Intel and AMD-based computers, varying the number of computational threads from 4 to 32. The calculation efficiency was evaluated by measuring the calculation speed increase in the filling and solidification of GP25 castings made of ML10 alloy, as well as the complex task of filling and solidification modeling nickel superalloy casing castings with radiation heat transfer simulation. The results indicate that the minimum computation time in ProCast software is observed when using 16 computational threads. This pattern holds true for both computing systems (Intel and AMD processors), and increasing the number of threads beyond this point does not make a practical difference. The performance decrease in this scenario can be attributed to the low-performance energy-efficient cores in systems based on Intel processors or the decrease in core frequency and full loading of physical cores in systems based on AMD processors. Multi-threading the modeling task in PoligonSoft software is less efficient than in ProCast, which is a result of the shared-memory architecture used in PoligonSoft. Despite the significant difference in parallel efficiency, the task of GP25 casting solidification in both PoligonSoft and ProCast is solved in a time close enough to be considered sufficient.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3