Improvement of selective laser melting regimes for the fabrication of Ti–6Al–4V porous structures for medical applications

Author:

Sheremetyev V. A.1ORCID,Lezin V. D.1ORCID,Kozik M. V.1ORCID,Molchanov S. A.2ORCID

Affiliation:

1. National University of Science and Technology “MISIS”

2. LLC “Conmet”

Abstract

This article describes approaches to the optimization of regimes of selective laser melting (SLM) used in the fabrication of porous materials from medical grade Ti–6Al–4V alloy with thin structural elements and a low level of defect porosity. Improved fusion of thin elements based on SLM regimes is achieved due to a significant decrease in the distance between laser passes (from 0.11 to 0.04–0.05 mm). Moreover, the balance between the laser energy density and building rate is compensated by changing the laser speed and laser power. The results of the study of defect porosity and hardness of samples fabricated according to experimental SLM regimes allowed three promising sets of parameters to be defined. One was selected for studying mechanical properties in comparison with the reference SLM regime. In the aims of this study, the samples were developed and fabricated using the structures of rhombic dodecahedron and Voronoi types with a porosity of 70–75 %. The decrease in defect porosity was established at ≈1.8 % to 0.6 %, depending on the SLM regime. This promotes a significant increase in strength properties of the material, including an increase in the yield  strength  of  rhombic dodecahedron from 76 to 132 MPa and the Voronoi structure from 66 to 86 MPa. The low Young module (1–2 GPa) remains, corresponding to the rigidity level of spongy bone tissue.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3