Structure and mechanical properties of welded joints from alloy based on VTI-4 orthorhombic titanium aluminide produced by pulse laser welding

Author:

Naumov S. V.1ORCID,Panov D. O.1ORCID,Chernichenko R. S.1ORCID,Sokolovsky V. S.1ORCID,Volokitina E. I.1ORCID,Stepanov N. D.1ORCID,Zherebtsov S. V.1ORCID,Alekseev Е. B.2,Nochovnaya N. A.2,Salishchev G. A.1ORCID

Affiliation:

1. Belgorod State University

2. Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (VIAM)

Abstract

Ti2AlNb-based alloys are promising materials for operation at high temperatures in aerospace industry. Meanwhile, the existing difficulties of weldability restrict opportunities of their application. This work is devoted to studies of welded joints from Ti2AlNb-based VTI-4 alloy, obtained using pulsed laser welding (PLW). The optimum PLW modes have been determined providing uniform faultless joint. The features of formation of external defects, internal pores, cracks and non-uniform penetration depth were detected depending on welding conditions. The main PLW parameters influencing on formation of welded joint are voltage and duration of laser pulse. It was demonstrated that at insufficient medium and high peak powers sawtooth seam roots and internal pores can be formed. However, at higher rates of energy input thermal hydraulic processes in welding bathe are violated, accompanied by metal splashing (spattering), heterogeneity of pulse imposition is observed. This leads to formation of cracks, higher porosity, heterogeneity of melting zone, and as a consequence, poor mechanical properties. Microstructure analysis of the welded joints obtained by means of PLW has demonstrated that the melting area is comprised of long dendritic grains of β phase, and the heat affected zone from two regions of β + α2phases and β + α2+ O phases. Herewith, the achieved joint strength equals to ~80 % of the base metal produced using the optimum PLW mode.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3