Affiliation:
1. Belgorod State University
2. Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (VIAM)
Abstract
Ti2AlNb-based alloys are promising materials for operation at high temperatures in aerospace industry. Meanwhile, the existing difficulties of weldability restrict opportunities of their application. This work is devoted to studies of welded joints from Ti2AlNb-based VTI-4 alloy, obtained using pulsed laser welding (PLW). The optimum PLW modes have been determined providing uniform faultless joint. The features of formation of external defects, internal pores, cracks and non-uniform penetration depth were detected depending on welding conditions. The main PLW parameters influencing on formation of welded joint are voltage and duration of laser pulse. It was demonstrated that at insufficient medium and high peak powers sawtooth seam roots and internal pores can be formed. However, at higher rates of energy input thermal hydraulic processes in welding bathe are violated, accompanied by metal splashing (spattering), heterogeneity of pulse imposition is observed. This leads to formation of cracks, higher porosity, heterogeneity of melting zone, and as a consequence, poor mechanical properties. Microstructure analysis of the welded joints obtained by means of PLW has demonstrated that the melting area is comprised of long dendritic grains of β phase, and the heat affected zone from two regions of β + α2phases and β + α2+ O phases. Herewith, the achieved joint strength equals to ~80 % of the base metal produced using the optimum PLW mode.
Publisher
National University of Science and Technology MISiS
Reference38 articles.
1. Banerjee D., Gogia A.K., Nandi T.K., Joshi V.A. A new ordered orthorhombic phase in a Ti3AlNb alloy. Acta Metallurgica. 1988;36(4):871—882. https://doi.org/10.1016/0001-6160(88)90141-1
2. Banerjee D. The intermetallic Ti2AlNb. Progress in Materials Science. 1997;42(1-4):135—158. https://doi.org/10.1016/S0079-6425(97)00012-1
3. Wang L., Sun D., Li H., Gu X., Shen C. Microstructures and mechanical properties of a laser-welded joint of Ti3Al—Nb alloy using pure Nb filler metal. Metals (Basel). 2018;8(10):785. https://doi.org/10.3390/met8100785
4. Shagiev M.R., Galeyev R.M., Valiakhmetov O.R. Ti2AlNb-Based intermetallic alloys and composites. Materials physics and mechanics. 2017;33(1):12—18. https://doi.org/10.18720/MPM.3312017_2
5. Pollock T.M., Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties. Journal of Propulsion and Power. 2006;22(2):361—374. https://doi.org/10.2514/1.18239
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献