Structure and properties of titanium hydride powder obtained from titanium sponge by SHS hydrogenation

Author:

Cherezov N. P.1,Alymov M. I.1

Affiliation:

1. Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)

Abstract

The results of the study of the structure and properties of titanium hydride powders obtained from titanium sponge by SHS hydrogenation and mechanical grinding are presented. Hydrogenation was carried out in a reactor at a constant hydrogen pressure of 3 MPa. After passing the combustion wave, the hot titanium sponge was cooled to room temperature in a hydrogenatmosphere. As a result, titanium hydride spongy granules with a hydrogen content of 4.2 wt.% were obtained. Titanium hydride was ground in a ball mill and divided into 4 fractions corresponding to the fractional composition of titanium powder PTK, PTS, PTM and PTOM. Particle size analysis showed that the samples of the PTK and PTOM powders have a narrower particle distribution in comparison with the PTS and PTM ones. Further, obtained powders chemical composition and surface morphology studies were carried out and bulk density, compaction, pycnometric density and specific surface area were determined. According to the chemical analysis results the content of carbon and oxygen impurities decreases during SHS-hydrogenation and the iron content slightly increases during mechanical grinding depending on the grinding time. The study of morphology showed that the hydride titanium particles have an irregular fragmentary shape, such morphology is characteristic of powders obtained by this technology. The surface structure has partially preserved structure of the initial titanium sponge and consists of elongated oriented grains. It is established that with a decrease in the particle size, the bulk density decreases, and the compaction increases. Pycnometric density and specific surface area values are approximately equal for all powder samples.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys,Surfaces, Coatings and Films,Materials Science (miscellaneous),Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3